Introduction to Data Analysis in Python#
In this exercise, we will take a look at 3D coordinates of a short facial expression sequence.
We will learn to work with csv data in python with pandas and numpy, create plots with matplotlib and to sequence time series data with Hidden Markov Models.
This exercise is based on two blogpost with tips and tricks to analyze facial expression and useful tips to write clean python code. Follow the links for further information. The following few notebooks will provide more detail on data inspection
, kinematic analysis
, and some easy machine learning
approaches to analyze your data.
Please download the .ipynb file and follow along on your computer. Add markdown blocks with notes and comments taken during the class.
Data Description#
The data for this exercise is provided here. A short sequence of facial expressions was recorded with two synchronized cameras, tracked with DeepLabCut and triangulated with Anipose for 3D analysis. See the videos below:
# To play the videos in Jupyter Notebook run this cell
from IPython.display import HTML
HTML('<iframe width="965" height="475" src="https://www.youtube.com/embed/MZmbhE77eWo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>')
HTML('<iframe width="965" height="475" src="https://www.youtube.com/embed/JaR1tO0EBnU" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>')
Set up Conda Environments#
conda create --name analysis
conda activate analysis
conda install ipython jupyterlab pandas numpy tk matplotlib
pip install hmmlearn
conda deactivate
conda remove --name analysis --all
Load Libraries#
# These are the libraries you will need to have installed in your environment
import math
import tkinter.filedialog
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from hmmlearn import hmm
Load data#
# Let us start the analysis by loading the csv file from the pose-3d output of Anipose
file = tkinter.filedialog.askopenfile(title='Select the csv file in the pose-3d directory', mode="r")
data = pd.read_csv(file, header=0)
data.info()
Inspect Data#
# Apart from the x-, y-, z-coordinates we are interested in, the anipose output also contains other variables we want to discard for now
scores = data.loc[:, data.columns.str.contains('score')]
scores.describe()
scores.hist()
scores.boxplot()
errors = data.loc[:, data.columns.str.contains('error')]
errors.describe()
errors.hist()
errors.boxplot()
Clean Data#
# Let's filter the coordinates and ignore the other variables
coords = data.loc[:,~data.columns.str.contains('score|error|ncams|fnum|center|M_')]
Egocentric Alignement#
# Now we want to define facial expressions in egocentric coordinates relative to the nasal bone
# Note that the reference point is arbitrary, but the nasal bone is a great reference, as it moves only by head movements and not by facial expressions.
centered_coords = coords.copy()
for i in range(centered_coords.shape[1]):
if '_x' in centered_coords.columns[i]:
centered_coords.loc[:,centered_coords.columns[i]] = centered_coords.loc[:,centered_coords.columns[i]].subtract(coords.loc[:,"nose1_x"].values)
elif '_y' in centered_coords.columns[i]:
centered_coords.loc[:,centered_coords.columns[i]] = centered_coords.loc[:,centered_coords.columns[i]].subtract(coords.loc[:,"nose1_y"].values)
elif '_z' in centered_coords.columns[i]:
centered_coords.loc[:,centered_coords.columns[i]] = centered_coords.loc[:,centered_coords.columns[i]].subtract(coords.loc[:,"nose1_z"].values)
else:
pass
emoface_egocentric = centered_coords.to_numpy()
Kinematic Features#
# Additionally to the relative coordinates for facial expression, we also may want to calculate some useful features of head movement
features = centered_coords.copy()
# Head position as coordinates of nasal bone reference
features['position_x'] = coords['nose1_x']
features['position_y'] = coords['nose1_y']
features['position_z'] = coords['nose1_z']
pos_x, = plt.plot(features['position_x'], label='x')
pos_y, = plt.plot(features['position_y'], label='y')
pos_z, = plt.plot(features['position_z'], label='z')
plt.xlabel('Time [frames]')
plt.ylabel('Position [pixel]')
plt.legend()
# Velocity of head movement as frame-to-frame difference in position
features['velocity_x'] = np.append([0],np.diff(features['position_x'], n=1))
features['velocity_y'] = np.append([0],np.diff(features['position_y'], n=1))
features['velocity_z'] = np.append([0],np.diff(features['position_z'], n=1))
vel_x, = plt.plot(features['velocity_x'], label='x')
vel_y, = plt.plot(features['velocity_y'], label='y')
vel_z, = plt.plot(features['velocity_z'], label='z')
plt.xlabel('Time [frames]')
plt.ylabel('Velocity [pixel/s]')
plt.legend()
# Acceleration of head movement as frame-to-frame difference in velocity
features['acceleration_x'] = np.append([0],np.diff(features['velocity_x'], n=1))
features['acceleration_y'] = np.append([0],np.diff(features['velocity_y'], n=1))
features['acceleration_z'] = np.append([0],np.diff(features['velocity_z'], n=1))
acc_x, = plt.plot(features['acceleration_x'], label='x')
acc_y, = plt.plot(features['acceleration_y'], label='y')
acc_z, = plt.plot(features['acceleration_z'], label='z')
plt.xlabel('Time [frames]')
plt.ylabel('Acceleration [pixel/s^2]')
plt.legend()
Additional Plotting#
# To better see what just happend we can plot the time series segmentation by HMM predictions
def plot_prediction(data, predictions):
"""
This function will plot the time series data and mark the transitions between predicted classes.
"""
colors = {"0": "black", "1":"dimgray", "2":"darkgray", "3":"white", "4":"bisque", "5":"tan", "6":"orange", "7":"salmon", "8":"gold", "9":"rosybrown", "10":"beige", "11":"thistle", "12":"peachpuff", "13":"khaki", "14":"skyblue", "15":"lightblue", "16":"lightsteelblue", "17":"lavender", "18":"mediumaquamarine", "19":"cadetblue"}
n = max(predictions)+1
name =[x for x in globals() if globals()[x] is data][0]
yloc = max(np.max(data))-(max(np.max(data)) - min(np.min(data)))/8
locy = yloc - (max(np.max(data)) - min(np.min(data)))/8
fig = plt.figure()
ax = plt.axes()
ax.plot(data)
start_pred = 0
for i in range(len(predictions)):
if i == len(predictions)-1:
end_pred = i+1
ax.axvspan(start_pred,end_pred, facecolor=colors["%d" %predictions[i]], alpha = 0.5)
loc = start_pred + (end_pred - start_pred)/2
ax.annotate('%d'%predictions[i], xy=(loc, locy), xytext=(loc+10, yloc),
arrowprops=dict(arrowstyle="->", facecolor='black'))
elif predictions[i] == predictions[i+1]:
pass
else:
end_pred = i
ax.axvspan(start_pred,end_pred, facecolor=colors["%d" %predictions[i]], alpha = 0.5)
loc = start_pred + (end_pred - start_pred)/2
ax.annotate('%d'%predictions[i], xy=(loc, locy), xytext=(loc+10, yloc),
arrowprops=dict(arrowstyle="->", facecolor='black'))
start_pred = end_pred
plt.xlabel("Time [frames]")
plt.ylabel("Feature value from %s data" %name)
plt.title('Hidden Markov Model predictions with N = %d Components' %n)
plt.show()
return
plot_prediction(features, pred1)
plot_prediction(coords, pred2)
# Next we will spit the entire time series of our video into each predicted class and calculate the average pose during that segment
def split_data(data, prediction):
"""
The split_data function will be used to split time series data into smaller
chunks by the prediction variable.
"""
n = max(prediction)+1 #read out the number of predicted components
data['pred'] = prediction
grouped = data.groupby(data.pred)
predictions = [grouped.get_group(i) for i in range(n)]
pose = [predictions[i].mean() for i in range(n)]
return predictions, pose
predictions1, pose1 = split_data(centered_coords, pred1)
predictions2, pose2 = split_data(centered_coords, pred2)
# Now we want to have a look at the average pose durig each predicted class. Because the facial landmarks alone would look a bit sad, we start by defining a facial skeleton to connect coordinates
def face_skeleton(pose):
"""
The face_skeleton function defines a mesh skeleton by connecting the facial landmarks as defined below.
This function is directly passed to plot_3Dpose.
"""
skeletons = []
for n in range(len(pose)): # read out n_components from different poses
lefteye = [pose[n]['lefteye1_x'], pose[n]['lefteye2_x']], [pose[n]['lefteye1_y'], pose[n]['lefteye2_y']], [pose[n]['lefteye1_z'], pose[n]['lefteye2_z']]
righteye = [pose[n]['righteye1_x'], pose[n]['righteye2_x']], [pose[n]['righteye1_y'], pose[n]['righteye2_y']], [pose[n]['righteye1_z'], pose[n]['righteye2_z']]
leyebrow = [pose[n]['leyebrow1_x'], pose[n]['leyebrow2_x'],pose[n]['leyebrow3_x']],[pose[n]['leyebrow1_y'], pose[n]['leyebrow2_y'],pose[n]['leyebrow3_y']],[pose[n]['leyebrow1_z'], pose[n]['leyebrow2_z'],pose[n]['leyebrow3_z']]
reyebrow = [pose[n]['reyebrow1_x'], pose[n]['reyebrow2_x'],pose[n]['reyebrow3_x']],[pose[n]['reyebrow1_y'], pose[n]['reyebrow2_y'],pose[n]['reyebrow3_y']],[pose[n]['reyebrow1_z'], pose[n]['reyebrow2_z'],pose[n]['reyebrow3_z']]
nose = [pose[n]['nose1_x'],pose[n]['nose3_x'],pose[n]['nose2_x'],pose[n]['nose4_x'],pose[n]['nose1_x']],[pose[n]['nose1_y'],pose[n]['nose3_y'],pose[n]['nose2_y'],pose[n]['nose4_y'],pose[n]['nose1_y']],[pose[n]['nose1_z'],pose[n]['nose3_z'],pose[n]['nose2_z'],pose[n]['nose4_z'],pose[n]['nose1_z']]
lips = [pose[n]['uplip_x'],pose[n]['llip_x'],pose[n]['lowlip_x'],pose[n]['rlip_x'],pose[n]['uplip_x']],[pose[n]['uplip_y'],pose[n]['llip_y'],pose[n]['lowlip_y'],pose[n]['rlip_y'],pose[n]['uplip_y']],[pose[n]['uplip_z'],pose[n]['llip_z'],pose[n]['lowlip_z'],pose[n]['rlip_z'],pose[n]['uplip_z']]
face = [pose[n]['rear_x'],pose[n]['chin_x'],pose[n]['lear_x']],[pose[n]['rear_y'],pose[n]['chin_y'],pose[n]['lear_y']],[pose[n]['rear_z'],pose[n]['chin_z'],pose[n]['lear_z']]
skeleton = lefteye, righteye, leyebrow, reyebrow, nose, lips, face
skeletons.append(skeleton)
return skeletons
def plot_3Dpose(pose, elevation, azimuth):
"""
This plot function takes the average pose coordinates of facial landmarks, creates a skeleton and visualizes the facial expression
in a 3D coordinate system with predefined elevantion and azimuth angles.
"""
skeletons = face_skeleton(pose)
ncols = 3
nrows = math.ceil(len(pose)/ncols)
width = ncols*6
height = nrows *5
fig, axes = plt.subplots(nrows, ncols, figsize=(width, height), subplot_kw=dict(projection='3d'))
for ax, n in zip(axes.flat, range(len(pose))):
x_points = pose[n][['_x' in s for s in pose[n].index]]
y_points = pose[n][['_y' in s for s in pose[n].index]]
z_points = pose[n][['_z' in s for s in pose[n].index]]
ax.scatter3D(x_points,y_points, z_points)
ax.view_init(elevation, azimuth)
ax.set(xlabel='X axis', ylabel='Y axis', zlabel='Z axis')
ax.set_title('Predicted Pose: %d' %(n+1))
for i in range(len(skeletons[0])):
x = skeletons[n][i][0]
y = skeletons[n][i][1]
z = skeletons[n][i][2]
ax.plot(x,y,z, color='g')
plt.suptitle('Hidden Markov Model predictions with N = %d Components' %len(pose))
plt.show()
return
plot_3Dpose(pose1, 11, 280)
plot_3Dpose(pose2, 11, 280)
# Now that we know how each facial expression looks like, we could analyze some simple kinematics to describe what actaually happens in each segment, appart from the average pose
def plot_kinematics(predictions, pose):
"""
This Function will create multiple subplots for every predicted pose and visualize simple kinematics as line plot and histogram.
"""
ncols = 3
nrows = math.ceil(len(predictions)/ncols)
width = ncols*6
height = nrows *5
fig, axes = plt.subplots(nrows, ncols, figsize=(width, height))
for ax, n in zip(axes.flat, range(len(pose))):
ax.plot(predictions[n]['position_x'], color = 'g', label = 'pos_x')
ax.plot(predictions[n]['position_y'], color = 'g', label = 'pos_y')
ax.plot(predictions[n]['position_z'], color = 'g', label = 'pos_z')
ax.plot(predictions[n]['velocity_x'], color = 'y', label = 'vel_x')
ax.plot(predictions[n]['velocity_y'], color = 'y', label = 'vel_y')
ax.plot(predictions[n]['velocity_z'], color = 'y', label = 'vel_z')
ax.plot(predictions[n]['acceleration_x'], color = 'r', label = 'acc_x')
ax.plot(predictions[n]['acceleration_y'], color = 'r', label = 'acc_y')
ax.plot(predictions[n]['acceleration_z'], color = 'r', label = 'acc_z')
ax.set(xlabel='Time (frames)', ylabel='Position, Velocity and Acceleration')
ax.legend()
ax.set_title('Kinematic Profile in Predicted Class: %d' %n)
plt.suptitle('Hidden Markov Model predictions with N = %d Components' %len(pose))
plt.show()
fig, axes = plt.subplots(nrows, ncols, figsize=(width, height))
for ax, n in zip(axes.flat, range(len(pose))):
ax.hist(predictions[n]['position_x'], color = 'g', label = 'x')
ax.hist(predictions[n]['position_y'], color = 'y', label = 'y')
ax.hist(predictions[n]['position_z'], color = 'r', label = 'z')
ax.set(xlabel='x, y, z movement', ylabel='frequency')
ax.legend()
ax.set_title('Movement in Predicted Class: %d' %n)
plt.suptitle('Hidden Markov Model predictions with N = %d Components' %len(pose))
plt.show()
fig, axes = plt.subplots(nrows, ncols, figsize=(width, height))
for ax, n in zip(axes.flat, range(len(pose))):
ax.hist(predictions[n]['velocity_x'], color = 'g', label = 'x')
ax.hist(predictions[n]['velocity_y'], color = 'y', label = 'y')
ax.hist(predictions[n]['velocity_z'], color = 'r', label = 'z')
ax.set(xlabel='x, y, z velocity', ylabel='frequency')
ax.legend()
ax.set_title('Velocity in Predicted Class: %d' %n)
plt.suptitle('Hidden Markov Model predictions with N = %d Components' %len(pose))
plt.show()
fig, axes = plt.subplots(nrows, ncols, figsize=(width, height))
for ax, n in zip(axes.flat, range(len(pose))):
ax.hist(predictions[n]['acceleration_x'], color = 'g', label = 'x')
ax.hist(predictions[n]['acceleration_y'], color = 'y', label = 'y')
ax.hist(predictions[n]['acceleration_z'], color = 'r', label = 'z')
ax.set(xlabel='x, y, z acceleration', ylabel='frequency')
ax.legend()
ax.set_title('Acceleration in Predicted Class: %d' %n)
plt.suptitle('Hidden Markov Model predictions with N = %d Components' %len(pose))
plt.show()
return
predictions1, pose1 = split_data(features, pred1)
plot_kinematics(predictions1, pose1)
predictions2, pose2 = split_data(features, pred2)
plot_kinematics(predictions2, pose2)